Peroxidase self-inactivation in prostaglandin H synthase-1 pretreated with cyclooxygenase inhibitors or substituted with mangano protoporphyrin IX.
نویسندگان
چکیده
Self-inactivation imposes an upper limit on bioactive prostanoid synthesis by prostaglandin H synthase (PGHS). Inactivation of PGHS peroxidase activity has been found to begin with Intermediate II, which contains a tyrosyl radical. The structure of this radical is altered by cyclooxygenase inhibitors, such as indomethacin and flurbiprofen, and by replacement of heme by manganese protoporphyrin IX (forming MnPGHS-1). Peroxidase self-inactivation in inhibitor-treated PGHS-1 and MnPGHS-1 was characterized by stopped-flow spectroscopic techniques and by chromatographic and mass spectrometric analysis of the metalloporphyrin. The rate of peroxidase inactivation was about 0.3 s(-)1 in inhibitor-treated PGHS-1 and much slower in MnPGHS-1 (0.05 s(-)1); as with PGHS-1 itself, the peroxidase inactivation rates were independent of peroxide concentration and structure, consistent with an inactivation process beginning with Intermediate II. The changes in metalloporphyrin absorbance spectra during inactivation of inhibitor-treated PGHS-1 were similar to those observed with PGHS-1 but were rather distinct in MnPGHS-1; the kinetics of the spectral transition from Intermediate II to the next species were comparable to the inactivation kinetics in each case. In contrast to the situation with PGHS-1 itself, significant amounts of heme degradation occurred during inactivation of inhibitor-treated PGHS-1, producing iron chlorin and heme-protein adduct species. Structural perturbations at the peroxidase site (MnPGHS-1) or at the cyclooxygenase site (inhibitor-treated PGHS-1) thus can influence markedly the kinetics and the chemistry of PGHS-1 peroxidase inactivation.
منابع مشابه
Comparison of peroxidase reaction mechanisms of prostaglandin H synthase-1 containing heme and mangano protoporphyrin IX.
Prostaglandin H synthase (PGHS) is a heme protein that catalyzes both the cyclooxygenase and peroxidase reactions needed to produce prostaglandins G2 and H2 from arachidonic acid. Replacement of the heme group by mangano protoporphyrin IX largely preserves the cyclooxygenase activity, but lowers the steady-state peroxidase activity by 25-fold. Thus, mangano protoporphyrin IX serves as a useful ...
متن کاملPTGS 2 ( prostaglandin - endoperoxide synthase 2 ( prostaglandin G / H synthase and cyclooxygenase ) )
COX2 is an enzyme that belongs to the prostaglandin G/H synthase family. It consists of 604 amino acids and has a molecular weight of 68996 Da. COX2 possesses two catalytic activities and respective active sites: a cyclooxygenase (COX) that converts arachidonic acid to a prostaglandin endoperoxide, prostaglandin G2 (PGG2), and; a peroxidase (POX) that reduces PGG2 to PGH2. COX2 functions as hom...
متن کاملInhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes.
At antipyretic and analgesic doses, salicylate has no antiplatelet or anti-inflammatory effects, unlike typical inhibitors of the prostaglandin H synthases (PGHSs). We demonstrated that salicylate inhibits PGHS-1 and -2 with a potency inversely related to ambient hydroperoxide concentrations. Salicylate inhibition of PGHS-1 was prevented by 12-hydroperoxyeicosatetraenoic acid (12-HPETE). Increa...
متن کاملProstaglandin H synthase-dependent mutagenic activation of benzidine in a Salmonella typhimurium Ames tester strain possessing elevated N-acetyltransferase levels.
Watanabe and colleagues (Biochem. Biophys. Res. Commun. 147: 974-979, 1987) have constructed plasmid-containing derivatives of Salmonella typhimurium Ames tester strain TA1538 with high levels of acetyltransferase activities. In this paper, we describe the mutagenic response of one of these strains, TA1538/1,8-DNP6 (pYG 121), to the bladder carcinogen benzidine and other arylamines. Strain TA15...
متن کاملTyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis.
There are spectral and biochemical data suggesting that a tyrosine group(s) is involved in the cyclooxygenase reaction catalyzed by prostaglandin endoperoxide (PGH) synthase. Treatment with tetranitromethane, a reagent which nitrates tyrosine residues, abolishes cyclooxygenase activity, but this inactivation can be largely prevented by competitive cyclooxygenase inhibitors such as ibuprofen and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 23 شماره
صفحات -
تاریخ انتشار 2001